If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26=81x^2
We move all terms to the left:
26-(81x^2)=0
a = -81; b = 0; c = +26;
Δ = b2-4ac
Δ = 02-4·(-81)·26
Δ = 8424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8424}=\sqrt{324*26}=\sqrt{324}*\sqrt{26}=18\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{26}}{2*-81}=\frac{0-18\sqrt{26}}{-162} =-\frac{18\sqrt{26}}{-162} =-\frac{\sqrt{26}}{-9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{26}}{2*-81}=\frac{0+18\sqrt{26}}{-162} =\frac{18\sqrt{26}}{-162} =\frac{\sqrt{26}}{-9} $
| 20+-w/32=18 | | 2x=1/3=7 | | 3(2z-4)=-6(2-z0 | | 144=2x+24 | | 13k-3(k+1)=2k+1 | | 3x-25=2x+3 | | 2(x^2)×5(x^2)=0.001(10^3-x)^2 | | Y=0.5x- | | 5x-9=7x-31 | | 6x-5+5=10x+6 | | 5w+8=83 | | 3(x+4)=4x+15 | | p-3|1/6=-2|1/2 | | X+(x-10)=54 | | -16t^2+32t+40=0 | | 1/3(b+6)=5/3b+8 | | 5(x-4)-25=50 | | -70=-2(n+2)+8(-4n-4) | | 3(x+5)=5+11 | | 210t-68=56=1164 | | 7x-8=3x+18 | | 16-7x=-4(2x-2) | | 6x-(3+8)=16x | | (2x+3)-x=8 | | 112+37x+3x^2=0 | | 3x+7-x=19+x | | 3a+8+aa=3 | | 18=-6r+4=r | | 4=7.7+p-3p | | 2r-4=2(2-7r) | | 12x-12=2/3(15x+18) | | 0.128-y=0.065 |